Проблема электромеханического сопряжения. Электромеханическое сопряжение в клетке скелетных мышц

Проблема электромеханического сопряжения. Электромеханическое сопряжение в клетке скелетных мышц
Проблема электромеханического сопряжения. Электромеханическое сопряжение в клетке скелетных мышц

Электромеханическое сопряжение - это цикл последователь­ных процессов, начинающийся с возникновения потенциала действия ПД на сарколемме (клеточной мембране) и заканчивающийся сократительным ответом мышцы.

Нарушение последовательности процессов сопряжения может приводить к патологиям и даже к летальному исходу. Основные этапы этого процесса можно проследить по рис. 11.

Процесс сокращения кардиомиоцита происходит следующим образом:

1- при подаче на клетку стимулирующего импульса открываются быстрые (время активации 2 мс) натриевые каналы, ионы входят в клетку, вызывая деполяризацию мембраны.

2- в результате деполяризация плазматической мембраны в ней и в Т –трубочках открываются потенциал- зависимые кальциевые каналы (время жизни 200 мс), и ионы поступают из внеклеточной среды, где их концентрация = , внутрь клетки (внутриклеточная концентрация );

3- кальций, поступающий в клетку, активирует мембрану СР, являющегося внутриклеточным депо ионов (в СР их концентрация достигает ), и высвобождает кальций из пузырьков СР, в результате чего возникает так называемый «кальцевый залп». Ионы из СР поступают на актин-миозиновый комплекс МФ, открывают активные центры актиновых цепей, вызывая замыкание мостиков и дальнейшее развитие силы и укорочения саркомера;

4- по окончании процесса сокращения миофибрилл ионы с помощью кальциевых насосов, находящихся в мембране СР, активно закачиваются внутрь саркоплазматического ретикулума;

5 – процесс электромеханического сопряжения заканчивается тем, что К пассивно выходит из клетки, вызывая деполяризацию мембраны:

6 – ионы активно выводятся во внеклеточную среду с помощью кальциевых насосов сарколеммы;

Таким образом, в кардиомиоците электромеханическое сопряжение идет в две ступени: в начале небольшой входящий поток кальция активирует мембраны СР, способствуя большому выбросу кальция из внутриклеточного депо, а затем в результате этого выброса происходит сокращение саркомера. Описанный двухступенчатый процесс сопряжения доказан экспериментально. Опыты показали, что: а) отсутствие потока кальция извне клетки прекращает сокращение саркомеров, б) в условиях постоянства количества кальция, высвобождаемого из СР, изменение амплитуды потока кальция приводит к хорошо коррелирующему изменению силы сокращения. Поток ионов внутрь клетки выполняет таким образом две функции: формирует длительное (200 мс) плато потенциала действия кардиомиоцита и участвует в процессе электромеханического сопряжения.



Следует отметить, что не во всех мышечных клетках организма процесс сопряжения происходит, как в кардиомиоците. Так, в скелетных мышцах теплокровных потенциал действия короткий (2-3 мс) и медленный поток ионов кальция в них отсутствует. В этих клетках сильно развита Т- система поперечных трубочек, подходящих непосредственно к саркомерам, близко к z – дискам (рис. 11). Изменения мембранного потенциала во время деполяризации через Т – систему передается в таких клетках непосредственно на мембрану СР, вызывая залповое высвобождение ионов и дальнейшую активацию сокращения (3,4,5). Временной ход этих процессов показан на рис.12.

Рис. 12. Временное соотношение между потенциалом действия кардиомиоцита (а) и одиночным сокращением (б) в этих клетках. Ордината слева – мембранный потенциал, справа – сила, - потенциал покоя.

Общим для любых мышечных клеток является процесс освобождения ионов и внутриклеточных депо саркоплазматического ретикулума и дальнейшая активация сокращения. Ход кальциевого выброса из СР экспериментально наблюдается с помощью люминесцирующего в присутствии ионов белка экворина, который был выведен из светящихся медуз.

Задержка начала развития сокращения в скелетных мышцах составляет 20 мс, а в сердечной – несколько больше (до 100 мс)

Электромиография - метод электрофизиологической диагностики поражений нервно-мышечной системы, состоящий в регистрации электрической активности (биопотенциалов) скелетных мышц.

Различают спонтанную электромиограмму, отражающую состояние мышц в покое или при мышечном напряжении (произвольном или синергическом), а также вызванную, обусловленную электрической стимуляцией мышцы или нерва.

Электромеханическое сопряжение – то цикл последовательных процессов, который начинается с возникновения потенциала действия на сарколемме и заканчивается сократительным ответом мышцы.

Общепринятой моделью мышечного сокращения является модель скользящих нитей, согласно которой сократительный процесс происходит следующим образом.

Под действием нервного импульса в сарколемме открываются натриевые каналы, и ионы Na + входят в мышечную клетку, вызывая возбуждение (деполяризацию) сарколеммы.

Электрохимически процесс возбуждения передается на саркоплазматической ретикулум. В результате повышается проницаемость этой мембранной структуры для ионов Са ++ и происходит их выброс в цитоплазматическую жидкость (саркоплазму), заполняющую мышечное волокно. Повышение концентрации Са ++ с 10 –7 до 10 –5 моль/л стимулирует циклическую работу миозиновых «мостиков». «Мостик» связывается с актином и тянет его к центру А -зоны, в область расположения миозиновых нитей, перемещая на расстояние 10–12 нм. Затем он отщепляется от актина, связывается с ним в другой точке и опять подтягивает в нужную сторону. Непрерывное движение актиновных нитей происходит в результате поочередной работы «мостиков». Частота циклов их движений, по-видимому, регулируется в зависимости от нагрузки на мышцу и может достигать 1000 Гц. «Мостики» обладают АТФ-азной активностью, стимулируют расщепление АТФ и используют высвобождающуюся при этом энергию для своей работы.

Возвращение мышцы к исходному состоянию обусловлено обратными переходами ионов Са ++ из саркоплазмы в ретикулум вследствие работы кальциевых насосов и тем, что К + пассивно выходит из мышечной клетки, вызывая реполяризацию саркоплемы.

Механическое усилие, развиваемое мышцей при сокращении, зависит от величины еë поперечного сечения, от начальной длины волокон и ряда других факторов. Сила мышцы, приходящаяся на 1 см 2 её поперечного сечения, называется абсолютной мышечной силой. Для человека она изменяется в пределах 50–100 . Сила одних и тех же мышц человека зависит от ряда физиологических условий: возраста, пола, тренированности и т. д. Следует также отметить. Что в разных мышечных клетках организма процесс сопряжения происходит несколько по-разному. Например, задержка начала сокращения по отношению к началу возбуждения сарколеммы в скелетных мышцах составляет 20 мс, в сердечной – несколько больше (до 100 мс).


* Если молекула или часть молекулы имеют неравный нулю дипольный момент или электрический заряд, то их называют полярными

Электромеханическое сопряжение - это последовательность процессов, в результате которых потенциал действия плазматической мембраны мышечного волокна приводит к запуску цикла поперечных мостиков . Плазматическая мембрана скелетных мышц электрически возбудима и способна генерировать распространяющийся потенциал действия посредством механизма, аналогичного тому, который действует в нервных клетках (см. " Проведение возбуждения между клетками ". Потенциал действия в волокне скелетной мышцы длится 1-2 мс и заканчивается раньше, чем появятся какие-либо признаки механической активности ( рис. 30.14). Начавшаяся механическая активность может продолжаться более 100 мс. Электрическая активность плазматической мембраны не оказывает прямого влияния на сократительные белки, а вызывает повышение цитоплазматической концентрации ионов Са2+, которые продолжают активировать сократительный аппарат и после прекращения электрического процесса.

В состоянии покоя в мышечном волокне концентрация свободного ионизированного Са2+ в цитоплазме вокруг толстых и тонких филаментов очень низка, около одной десятимиллионной доли моля/л. При такой низкой концентрации ионы Са2+ занимают очень небольшое количество участков связывания на молекулах тропонина, поэтому тропомиозин блокирует активность поперечных мостиков . После потенциала действия концентрация ионов Са2+ в цитоплазме быстро возрастает, и они связываются с тропонином , устраняя блокирующий эффект тропомиозина и инициируя цикл поперечных мостиков. Источником поступления Са2+ в цитоплазму является саркоплазматический ретикулум мышечного волокна.

Саркоплазматический ретикулум мышц гомологичен эндоплазматическому ретикулуму других клеток. Он располагается вокруг каждой миофибриллы наподобие "рваного рукава", сегментами которого окружены A-диски и I-диски ( рис. 30.15). Концевые части каждого сегмента расширяются в виде так называемых латеральных цистерн , соединенных друг с другом серией более тонких трубок. В латеральных цистернах депонируется Са2+; после возбуждения плазматической мембраны он высвобождается.

Отдельную систему составляют поперечные трубочки (T-трубочки) , которые пересекают мышечное волокно на границе A-дисков и I-дисков , проходят между латеральными цистернами двух смежных саркомеров и выходят на поверхность волокна, составляя единое целое с плазматической мембраной. Просвет Т-трубочки заполнен внеклеточной жидкостью, окружающей мышечное волокно. Ее мембрана, как и плазматическая, способна к проведению потенциала действия. Возникнув в плазматической мембране, потенциал действия быстро распространяется по поверхности волокна и мембране Т-трубочек в глубь клетки. Достигнув области Т-трубочек, прилегающих к латеральным цистернам, потенциал действия активирует потенциалзависимые "воротные" белки их мембраны, физически или химически сопряженные с кальциевыми каналами мембраны латеральных цистерн. Таким образом, деполяризация мембраны Т-трубочек. обусловленная потенциалом действия, приводит к открыванию кальциевых каналов мембраны латеральных цистерн, содержащих Са2+ в высокой концентрации, и ионы Са2+ выходят в цитоплазму. Повышение цитоплазматического уровня Са2+ обычно бывает достаточным для активации всех поперечных мостиков мышечного волокна.

Процесс сокращения продолжается, пока ионы Са2+ связаны с тропонином , т.е. до тех пор, пока их концентрация в цитоплазме не вернется к исходному низкому значению. Мембрана саркоплазматического ретикулума содержит Са2+-АТФазу - интегральный белок, осуществляющий активный транспорт Са2+ из цитоплазмы обратно в полость саркоплазматического ретикулума. Са2+ высвобождается из ретикулума в результате распространения потенциала действия по Т-трубочкам ; для его возвращения в ретикулум нужно гораздо больше времени, чем для выхода. Поэтому повышенная концентрация Са2+ в цитоплазме сохраняется в течение некоторого времени и сокращение мышечного волокна продолжается после завершения потенциала действия.

Подведем итог. Сокращение обусловлено высвобождением ионов Са2+, хранящихся в саркоплазматическом ретикулуме; когда Са2+ поступает обратно в ретикулум, сокращение заканчивается и начинается расслабление ( рис. 30.16). Источником энергии для кальциевого насоса служит АТФ - это одна из трех его главных функций в мышечном сокращении (

Молекулярный механизм мышечного сокращения посредством скольжения актиновых нитей заключается в следующем. Миозиновые головки соединяют протофибриллу с актиновой. При их наклонах происходит скольжение, двигающее актиновую нить к центру саркомера. За счет биполярной организации миозиновых молекул на обеих сторонах нитей создаются условия для скольжения актиновых нитей в разные стороны.

Главным в теории является то, что не нити (миозиновые и актиновые) укорачиваются. Длина их остается неизменной и при растяжении мышц. Но пучки тонких нитей, проскальзывая, выходят между толстыми нитями, уменьшается степень их перекрытия, таким образом происходит сокращение.

Регулирующая роль ионов кальция в мышечном сокращении

Как сказано выше, для возникновения сокращения скелетной мышцы ионы кальция должны поступить к миофибриллам из саркоплазматической сети. Так называют систему пузырьков и цистерн, отделенных мембранами от остальной саркоплазмы (рисунок 6). СПС занимает примерно 10% объема мышечного волокна, а суммарная площадь ее мембран в миоците приблизительно в 100 раз больше поверхности сарколеммы (мембраны саркомеров). СПС служит кальциевым депо в мышечном волокне — содержание в ней ионов кальция огромно. Следовательно, на мембране СПС поддерживается колоссальный градиент Са 2+ , но в покое она совершенно непроницаема для этого иона.

Выход кальция из СПС прекращается сразу вслед за реполяризациией сарколеммы, но миофибриллы пребывают в сокращенном состоянии. Чтобы миофибриллы расслабились, кальции должен обратно вернуться в саркоплазматическую сеть. Но такой транспорт приходится осуществлять вопреки действию огромного концентрационного градиента (в СПС кальция много, в саркоплазме мало). Следовательно, расслабление миофибрилл в миоците скелетных мышц после их сокращения невозможно без участия системы активного транспорта — кальциевой помпы (рисунок 6, В). Ее работа — неотъемлемый элемент сократительного процесса в мышце. Из мембраны СПС выделена Са-активируемая АТФаза, которая служит основным компонентом кальциевого насоса.

Хемомеханический этап мышечного сокращения

В покое, когда ионов Ca мало, скольжения не происходит, потому что этому препятствуют молекулы тропонина и отрицательно заряды АТФ, АТФ-азы и АДФ. Повышенная концентрация ионов Ca происходит за счет поступления его из межфибриллярного пространства. При этом происходит ряд реакций с участием ионов Ca:

Понижение работоспособности изолированной из организма мышцы при ее длительном раздражении обусловлено двумя основными причинами. Первой из них является то, что во время сокращений в мышце накапливаются продукты обмена веществ (фосфорная кислота, связывающая Са++, молочная кислота и др.), оказывающие угнетающее действие на работоспособность мышцы. Часть этих продуктов, а также ионы Са диффундируют из волокон наружу в околоклеточное пространство и оказывают угнетающее действие на способность возбудимой мембраны генерировать ПД. Так, если изолированную мышцу, помещенную в небольшой объем жидкости Рингера, довести до полного утомления, то достаточно только сменить омывающий ее раствор, чтобы восстановились сокращения мышцы.

Механизм мышечного сокращения

Рассчитано, что в каждую миофибриллу, диаметр которой составляет 1 мкм, входит примерно 2500 протофибрилл, то есть удлиненных полимеризованных молекул белков (актина и миозина). Актиновые протофибриллы в два раза тоньше миозиновых. В покое эти мышцы находятся так, что актиновые нити кончиками проникают в промежутки между миозиновыми протофибриллами.

При электронной микроскопии видно, что на боковых сторонах миозиновой нити обнаруживаются выступы, получившие название поперечных мостиков. Они ориентированы по отношению к оси миозиновой нити под углом 120°. Согласно современным представ­лениям, поперечный мостик состоит из головки и шейки. Головка приобретает выраженную АТФазную активность при связывании с актином. Шейка обладает эластическими свойствами и представляет собой шарнирное соединение, поэтому головка поперечного мостика может поворачиваться вокруг своей оси.

Электромеханическое сопряжение в мышцах

3.Для определения механических свойств костной ткани была взятапластинка из свода черепа со следующими размерами: длина L = 5 см, ширина b = 1 см, толщина h = 0,5 см. Под действием силы F = 200 Н пластинка удлинилась на ∆L = 1,2∙10 -3 см. Определите по этим данным модуль Юнга костной ткани при деформации растяжения.

Таким образом, в кардиомиоците электромеханическое сопряжение идет в две ступени: вначале небольшой входящий поток кальция активирует мембраны СР, способствуя большему выбросу кальция из внутриклеточного депо, а затем в результате этого выброса происходит сокращение саркомера. Заметим, что описанный выше двухступенчатый процесс сопряжения доказан экспериментально.

Электро-механическое сопряжение в сердечной мышце

Этап 2. Гидролиз АТФ . Расщепление АТФ на АДФ и неорганический фосфат (Ф) происходит в головке миозина, продукты гидролиза остаются в миозине. В результате гидролиза головка миозина “распрямляется”, т.е. располагается перпендикулярно или под углом 90 0 относительно толстых и тонких нитей. Это движение приводит к тому, что кончик нити миозина продвигается на 11 нм вдоль нити актина и головка миозина оказывается против нового мономера актина. Если все поперечные мостики находятся в таком состоянии — мышца расслаблена.

2. Сердечные гликозиды. Производные дигиталиса способны ингибировать Na-K насос плазматической мембраны и, следовательно, повышать уровень внутриклеточного Na + ( i). В результате происходит замедление Na-Са обмена, повышение уровня [Са 2+ ] i и увеличение сократимости. Недавние исследования выявили новый механизм действия сердечных гликозидов — через увеличение проницаемости Na + -каналов плазматической мембраны для ионов Са 2+.

Нервно-мышечная физиология

Квантовая гипотеза освобождения медиатора. Постсинаптические потенциалы, вызванные раздражением двигательного нерва (потенциалы концевой пластинки — ПКП), от раздражения к раздражению варьируют по амплитуде, причем эти колебания кратны амплитуде МПКП. Было предположено, что медиатор в синапсе освобождается в виде мультимолекулярных порций — квантов. В покое случайное освобождение из нервного окончания отдельных порций вызывает появление на постсинаптической мембране МПКП, а в ответ на раздражение происходит синхронное освобождение нескольких десятков или сот квантов и возникает ПКП. Электрофизиологическое определение показало, что квант медиатора состоит из 1000-10 000 молекул ацетилхолина.

Комедиаторы — это сопутствующие синаптические посредники, характеризующиеся прежде всего совместной локализацией, совместным высвобождением и общей клеткой-мишенью. Под совместной локализацией понимается синтез и депонирование медиаторов в одном и том же нейроне, их происхождение в одних и тех же пресинаптических окончаниях, но не обязательно в одних и тех же пузырьках. Под совместным высвобождением понимается экзоцитоз двух (и более) медиаторов, в результате одной и той же активации пресинаптического окончания, под которым в данном случае подразумевается не одиночный пресинаптический потенциал действия, а разряд потенциалов действия с одной и той же частотой.

Механизм электромеханического сопряжения теория скольжения роль ионов кальция

Такой механизм активации обусловлен действием Са 2+ на тропонин, который работает как «кальциевый переключатель»: при связывании с Са 2+ его молекула деформируется таким образом, что как бы заталкивает тропомиозин в желобок между двумя цепочками актиновых мономеров, т. е. в «активированное положение».

У гладкомышечных клеток веретеновидная форма, длина примерно 50–400 мкм и толщина 2–10 мкм. Соединенные особыми межклеточными контактами (десмосомами), они образуют сеть с вплетенными в нее коллагеновыми волокнами. Из–за нерегулярного распределения миозиновых и актиновых нитей эти клетки лишены поперечной полосатости, характерной для сердечной и скелетной мускулатуры. Они также укорачиваются за счет скольжения миофиламентов относительно друг друга, но скорости скольжения и расщепления АТФ здесь в 100–1000 раз ниже, чем в поперечнополосатых мышцах. В связи с этим гладкие мышцы особенно хорошо приспособлены для длительного устойчивого сокращения, не приводящего к утомлению и значительным энергозатратам. Сократительное напряжение на единицу площади поперечного сечения у гладких и скелетных мышц часто одинаково (30–40 Н/см 2), и при длительном сокращении они могут удерживать одинаковую нагрузку. Однако энергия, расходуемая при этом гладкой мышцей, если оценивать по потреблению O 2 , в 100–500 раз меньше .

Биология и медицина

Отдельную систему составляют поперечные трубочки (T-трубочки) , которые пересекают мышечное волокно на границе A-дисков и I-дисков, проходят между латеральными цистернами двух смежных саркомеров и выходят на поверхность волокна, составляя единое целое с плазматической мембраной. Просвет Т-трубочки заполнен внеклеточной жидкостью, окружающей мышечное волокно. Ее мембрана, как и плазматическая, способна к проведению потенциала действия. Возникнув в плазматической мембране, потенциал действия быстро распространяется по поверхности волокна и мембране Т-трубочек в глубь клетки. Достигнув области Т-трубочек, прилегающих к латеральным цистернам, потенциал действия активирует потенциалзависимые «воротные» белки их мембраны, физически или химически сопряженные с кальциевыми каналами мембраны латеральных цистерн. Таким образом, деполяризация мембраны Т-трубочек. обусловленная потенциалом действия, приводит к открыванию кальциевых каналов мембраны латеральных цистерн, содержащих Са2+ в высокой концентрации, и ионы Са2+ выходят в цитоплазму. Повышение цитоплазматического уровня Са2+ обычно бывает достаточным для активации всех поперечных мостиков мышечного волокна.

Процесс сокращения продолжается, пока ионы Са2+ связаны с тропонином, т.е. до тех пор, пока их концентрация в цитоплазме не вернется к исходному низкому значению. Мембрана саркоплазматического ретикулума содержит Са2+-АТФазу — интегральный белок, осуществляющий активный транспорт Са2+ из цитоплазмы обратно в полость саркоплазматического ретикулума. Са2+ высвобождается из ретикулума в результате распространения потенциала действия по Т-трубочкам; для его возвращения в ретикулум нужно гораздо больше времени, чем для выхода. Поэтому повышенная концентрация Са2+ в цитоплазме сохраняется в течение некоторого времени и сокращение мышечного волокна продолжается после завершения потенциала действия.

МЕХАНИЗМ СОКРАЩЕНИЯ МЫШЕЧНОГО ВОЛОКНА

3. Происходит процесс электромеханического сопряжения: он представляет собой преобразование электрического потенциала действия в механическое «скольжение» протофибрилл по отношению друг к другу. Этот процесс происходит в несколько этапов с обязательным посредством ионов кальция!

Хранение и высвобождение ионов кальция. В состоянии расслабления мышца содержит более 1 мкмоль Са на 1 г сырого веса . Если бы соли Са не были изолированы в особых внутриклеточных хранилищах, обогащенные кальцием мышечные волокна находились бы в состоянии непрерывного сокращения. Структура внутриклеточных систем хранения кальция следующая: во многих участках мембрана мышечной клетки углубляется внутрь волокна, перпендикулярно его продольной оси, образуя трубки; эта система поперечных трубочек (Т-система) соединяется с внеклеточной средой. Перпендикулярно Т-системе, т.е. параллельно миофибриллам, расположена система продольных трубочек (истинный саркоплазматический ретикулум). Пузырьки на концах этих трубочек, терминальные цистерны , находятся очень близко к мембранам поперечной системы, образуя триады. В этих пузырьках и хранится внутриклеточный Са 2+ . В отличие от поперечной системы продольная система не соединяется с окружающей средой.

24 Авг 2018 495

Электромеханическое сопряжение - это цикл последовательных процессов, начинающийся с возникновения потенциала действия ПД на сарколемме (клеточной мембране) и заканчивающийся сократительным ответом мышцы.

Основная особенность электронных учебных пособий состоит в сочетании необходимого и специально подобранного теоретического материала, дополняющего печатные издания с большим числом разнообразных, тщательно проработанных тестов.

Многофункциональное электронное учебное пособие предназначено для самостоятельного освоения учебного курса, получения навыков практического применения знаний, для автоматизации и интеллектуализации прикладных задач. Ориентация системы тестирования на личностные качества обучаемых позволяет определить индивидуальные особенности обучающегося и, в соответствии с этим, рекомендовать методику обучения, которая позволит оптимизировать процесс получения знаний.

Нарушение последовательности процессов сопряжения может приводить к патологиям и даже к летальному исходу. Основные этапы этого процесса можно проследить по схеме рисунок 11.

Рисунок 11 Схема электромеханического сопряжения в кардиомиоците (М - клеточная мембрана-сарколемма, СР - саркоплазматический ретикулум, МФ - миофибрилла, Z - z-диски, Т - Т-система поперечных трубочек); 1 - поступления Na+ и 2 - поступления Са2+ в клетку при возбуждении мембраны, 3 - "кальциевый залп", 4 - активный транспорт Са2+ в СР, 5 - выход из клетки К+, вызывающий реполяризацию мембраны, 6 -- активный транспорт Са2+ из клетки

Процесс сокращения кардиомиоцита происходит следующим образом (номера пунктов в тексте соответствуют номерам процессов в схеме электромеханического сопряжения на рисунок 11):

  • 1 - при подаче на клетку стимулирующего импульса открываются быстрые (время активации 2 мс) натриевые каналы, ионы Na+ входят в клетку, вызывая деполяризацию мембраны;
  • 2 - в результате деполяризация плазматической мембраны в ней и в Т-трубочках открываются потенциал-зависимые медленные кальциевые каналы (время жизни 200 мс), и ионы Са2+ поступают из внеклеточной среды, где их концентрация 2 * 10-3 моль / л, внутрь клетки (внутриклеточная концентрация Са2+ 10-7 моль /л);
  • 3 - кальций, поступающий в клетку, активирует мембрану СР, являющегося внутриклеточным депо ионов Са2+ (в СР их концентрация достигает = 10"3 моль/л), и высвобождает кальций из пузырьков СР, в результате чего возникает так называемый «кальциевый залп». Ионы Са2+ из СР поступают на актин-миозиновый комплекс МФ, открывают активные центры актиновых цепей, вызывая замыкание мостиков и дальнейшее развитие силы и укорочения саркомера;
  • 4 - по окончании процесса сокращения миофибрилл ионы Са2+ с помощью кальциевых насосов, находящихся в мембране СР, активно заканчиваются внутрь саркоплазматического ретикулума;
  • 5 - процесс электромеханического сопряжения заканчивается тем, что К+ пассивно выходит из клетки, вызывая реполяризацию мембраны;
  • 6 - ионы Са2+ активно выводятся во внеклеточную среду с помощью кальциевых насосов сарколеммы.

Таким образом, в кардиомиоците электромеханическое сопряжение идет в две ступени: вначале небольшой входящий поток кальция активирует мембраны СР, способствуя большему выбросу кальция из внутриклеточного депо, а затем в результате этого выброса происходит сокращение саркомера. Описанный выше двухступенчатый процесс сопряжения доказан экспериментально. Опыты показали, что: а) отсутствие потока кальция извне клетки jCa прекращает сокращение саркомеров, б) в условиях постоянства количества кальция, высвобождаемого из СР, изменение амплитуды потока кальция приводит к хорошо коррелирующему изменению силы сокращения.

Следует отметить, что не во всех мышечных клетках организма процесс сопряжения происходит, как в кардиомиоците. Так, в скелетных мышцах теплокровных потенциал действия короткий (2-3 мс) и медленный поток ионов кальция в них отсутствует. В этих клетках сильно развита Т-система поперечных трубочек, подходящих непосредственно к саркомерам близко к z-дискам (см. рисунок 11). Изменения мембранного потенциала во время деполяризации через Т-систему, вызывая залповое высвобождение ионов Са2+ и дальнейшую активацию сокращения (3, 4, 5).

Временной ход описанных процессов показан на рисунок 12.

Общим для любых мышечных клеток является процесс освобождения ионов Са2+ и внутриклеточных депо - саркоплазматического ретикулума и дальнейшая активация сокращения. Ход кальциевого выброса из СР экспериментально наблюдается с помощью люминесцирующего в присунокутствии ионов Са2+ белка экворина, который был выделен из светящихся медуз. Задержка начала развития сокращения в скелетных мышцах составляет 20 мс, а в сердечной - несколько больше (до 100 мс).

Рисунок 12 Временное соотношение между потенциалом действия кардиомиоцита (а) и одиночным сокращением (б) в этих клетках. Ордината слева - мембранный потенциал, справа - сила. - потенциал покоя